您现在的位置: 首页>>团队队伍>>数据科学>>正文

李新服

 

李新服

职称:教授

 

一、发表的科研论文

[1] Xinfu Li, Li Xu*, Meiling Zhu, Multiplicity and Stability of Normalized Solutions to Non-autonomous Schrödinger Equation with Mixed Non-linearities, Proceedings of the Edinburgh Mathematical Society, 67(1) (2024),1-27.

[2] Xinfu Li, Nonexistence, existence and symmetry of normalized ground states to 

Choquard equations with a local perturbation. Complex Variables and Elliptic Equations, 68(4) (2023), 578-602.

[3] Xinfu Li, Standing waves to upper critical Choquard equation with a local perturbation: Multiplicity, qualitative properties and stability, Advances in Nonlinear Analysis, 11(1) (2022), 1134-1164.

[4] Xinfu Li, Existence of normalized ground states for the Sobolev critical Schrödinger equation with combined nonlinearities, Calc. Var., 60(5) (2021), 169.

[5] Xinfu Li, Shiwang Ma*, Choquard equations with critical nonlinearities, Communications in Contemporary Mathematics, 22(04) (2020), 1950023.

[6] Xinfu Li, Shiwang Ma, Guang Zhang*, Solutions to upper critical fractional Choquard equations with potential, Advances in Differential Equations, 25(3-4) (2020), 135-160.

[7] Xinfu Li, Global existence and blowup for Choquard equations with an inverse-square potential, Journal of Differential Equations, 268(8) (2020), 4276-4319.

[8] Xinfu Li*, Junying Zhao, Orbital stability of standing waves for Schrödinger type equations with slowly decaying linear potential, Computers and Mathematics with Applications, 79(2) (2020), 303-316.

[9] Xinfu Li, Xiaonan Liu, Shiwang Ma*, Infinitely many bound states for Choquard equations with local nonlinearities, Nonlinear Analysis-Theory Methods & Applications, 189 (2019), 111583.

[10] Xinfu Li, Shiwang Ma, Guang Zhang*, Existence and qualitative properties of solutions for Choquard equations with a local term, Nonlinear Analysis: Real World Applications, 45 (2019), 1-25.

 

二、主持或参加的科学研究项目

[1] 国家自然科学基金青年科学基金项目,质量约束下Choquard方程驻波解的存在性及相关研究,2021.01-2023.12,已结题,主持

[2] 国家自然科学基金青年科学基金项目,几类高维微分系统的周期轨分支,2019.01-2021.12,已结题,第二参与人

[3] 天津市教委一般项目,两类非局部椭圆方程解的定性研究,2018.01-2019.12,已结题,主持

[4] 304永利集团青年基金项目,一类阻尼波动方程整体解渐近状态的研究,2014.07-2016.06,已结题,主持

[5] 国家自然科学基金数学天元基金,几类平面微分系统的极限环分支,2017.01-2017.12,已结题,第四参与人

[6] 国家自然科学基金面上项目,周期边界时空离散反应扩散系统的动力学分析,2014.01-2017.12,已结题,第四参与人

 


上一条:朱玉
下一条:贾丹丹

关闭